首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   8篇
综合类   1篇
物理学   30篇
  2024年   2篇
  2021年   1篇
  2017年   4篇
  2016年   4篇
  2014年   3篇
  2011年   2篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有31条查询结果,搜索用时 156 毫秒
11.
针对管道内低频噪声难以抑制的问题,本文基于亥姆霍兹共振腔(HR)阵列吸声板和穿孔管消声器组合,设计了一种复合式宽带消声器。首先利用有限元法仿真分析传统穿孔管消声器,发现中低频消声能力较差,通过嵌入HR阵列吸声板吸收中低频噪声。采用仿真与实验的方式研究吸声板的声学性能:在400-1000 Hz频段内的平均吸声系数达到了0.88。然后对复合式消声器进行数值模拟及3D打印阻抗管实验测试对比:复合式消声器在400-1718Hz频率范围内的平均传递损失为18.15 dB ,最终实现了管道内全频带噪声有效控制。  相似文献   
12.
A polypropylene (PP) film was ablated using a femtosecond laser with a center wavelength of 785 nm, a pulse width of 184 fs and a repetition rate of 1 kHz. Increments of both the pulse energy and the shot number of pulses lead to co-occurrence of photochemical and thermal effect, demonstrated by the spatial expansion of rim on the surface of PP. The shapes of the laser-ablated PP films were imaged by a scanning electron microscope (SEM) and measured by a 3D optical measurement system (NanoFocus). And, the gas and water vapor transmission rate, mechanical properties of PP film micropatterned by fs laser pulses was characterized. Our results demonstrate that a femtosecond pulsed laser is an efficient tool for breathable packaging films in modifying the flow of air and gas, where the micropatterns are specifically tailored in size, location and number of which is easily controlled by laser processing conditions.  相似文献   
13.
This work formulates the acoustical performance prediction on a single-inlet/double-outlet cylindrical expansion-chamber muffler. Expressions for the transmission loss (TL) of the muffler are formulated by using the modal meshing approach and the plane wave theory, respectively. The parametric influence upon the values of TL for this kind of muffler is numerically analyzed for various cases of length-diameter ratio, and the computed results of TL are compared to present the higher order mode effects. The results by the modal meshing approach are also compared with the finite element method to verify its accuracy.  相似文献   
14.
As for the sound absorbing system using an MPP (microperforated panel), a double-leaf MPP sound absorber has been studied so far. However, this structure uses two MPPs, which are still expensive, and is disadvantageous when its cost is concerned. Therefore, it is considered that it can be advantageous if one of the leaves can be replaced with a less expensive material keeping high sound absorption performance. In this study, the possibility of producing a useful sound absorbing structure with an MPP and a permeable membrane as an alternative less expensive material is examined. The acoustic properties of this MPP and permeable membrane combination absorber are analysed theoretically with a Helmholtz integral formulation. The absorption performance and mechanism are discussed through the numerical examples. Also, the effect of a honeycomb in the air cavity, which is to be used for reinforcing the structure, is also discussed through a theoretical analysis.  相似文献   
15.
Multi-layer structures have issues with sound insulation at low and mid-frequencies due to mass-air-mass resonance. The purpose of this study is to investigate improvements to the sound insulation performance of multi-layer structures using a microperforated panel (MPP), which can absorb well over a wide frequency range. Although MPPs have been investigated over the last several decades, almost all studies have been conducted in terms of sound absorption. Herein the sound transmission loss of multi-layer structures with flexible MPPs of infinite extent is theoretically investigated. The calculation is based on the wave equation and the equation of panel vibration including the effect of perforation of the panel. Additionally to consider a more realistic sound insulation performance, the effect of the directional distribution of the incident energy in a reverberation chamber is taken into account. Experiments are conducted using an acoustic tube to validate the calculated results and the reverberation chamber method to verify the actual sound insulation characteristics. Both experiments agree well with the theoretically calculated perforation effects. Consequently, MMPs are confirmed to improve the deterioration of sound insulation performance due to mass-air-mass resonance of multi-layer structures.  相似文献   
16.
Sound absorption by microperforated panels (MPP) has received increasing attention the past years as an alternative to conventional porous absorbers in applications with special cleanliness and health requirements. The absorption curve of an MPP depends on four parameters: the holes diameter, the panel thickness, the perforation ratio, and the thickness of the air cavity between the panel and an impervious wall. It is possible to find a proper combination of these parameters that provides an MPP absorbing in one octave band or two, within the frequency range of interest for noise control applications. However, when a wider absorption frequency band is required, it is necessary to design multiple-layer MPP (ML-MPP). The design of an N-layers MPP depends on 4N parameters. Consequently, the tuning of an optimal ML-MPP by exhaustive search within a prescribed frequency band becomes impractical. Therefore, simulated annealing is proposed in this paper as a tool to solve the optimization problem of finding the best combination of the constitutive parameters of an ML-MPP providing the maximum average absorption within a prescribed frequency band.  相似文献   
17.
A numerical study of double-leaf microperforated panel absorbers   总被引:1,自引:0,他引:1  
Microperforated panel (MPP) absorbers are promising as a basis for the next-generation of sound absorbing materials. Typically, they are backed by an air-cavity in front of a rigid wall such as a ceiling or another interior surface of a room. Indeed, to be effective, MPP absorbers require the Helmholtz-type resonance formed with the backing cavity. Towards the creation of an efficient sound-absorbing structure with MPPs alone, the acoustical properties of a structure composed of two parallel MPPs with an air-cavity between them and no rigid backing is studied numerically. In this double-leaf MPP (DLMPP) structure, the rear leaf (i.e., the MPP remote from the incident sound) plays the role of the backing wall in the conventional setting and causes resonance-type absorption. Moreover, since a DLMPP can work efficiently as an absorber for sound incidence from both sides, it can be used efficiently as a space absorber, e.g., as a suspended absorber or as a sound absorbing panel. The sound absorption characteristics of the double-leaf MPP are analysed theoretically for a normally incident plane wave. The effects of various control parameters are discussed through a numerical parametric study. The absorption mechanisms and a possible design principle are discussed also. It is predicted that: (1) that a resonance absorption, similar to that in conventional type MPP absorbers, appears at medium-to-high frequencies and (2) that considerable “additional” absorption can be obtained at low frequencies. This low-frequency absorption is similar to that of a double-leaf permeable membrane and can be an advantage compared with the conventional type of MPP arrangement.  相似文献   
18.
I.lntroductionTheac0usticperformanccofmicropcrforatedmumerhasbeengreatlynoticedinre-ccntyears.Especially,itshighsi1encingva1ueandbroadsi1encingfrequencyrangeenableittobeusedwidelyinmanyyiclds,suchasvehicleexhaustsystem,ventilator.Butitisdifficulttodesignagoodsilcnccrbecauseoritscomp1exacousticperformanccwithinPerforatedtubes.Thegoverningwaveequationofmicroperforatedmufflerisnotlinearduetothenonuniformmassflowofgasaswc11asthetcmpcraturegradientalongthePerforatedducts.Inordertoutilizethegoodsi…  相似文献   
19.
The aeroacoustic wind tunnel at Brandenburg University of Technology at Cottbus is a newly commissioned research facility for the experimental study of sound generation from bodies immersed in a fluid flow. The paper discusses the design criteria for the open jet wind tunnel that provides a maximum wind speed of 72 m/s at continuous operation and may be operated with nozzles of different dimension between 35 cm diameter (circular nozzle) and 12 cm by 14.7 cm (rectangular nozzle). Experiments may be performed either in a reverberant or in an anechoic environment. Both the aerodynamic and the acoustic design of the wind tunnel components are discussed in detail. Background noise measurements in the completed facility revealed very low levels comparable to other wind tunnels. The results of aerodynamic wind tunnel calibration confirmed a uniform flow quality in the jet and a very low axial turbulence intensity which is less than 0.2% for the 35 cm nozzle and less than 0.1% for the other nozzles. A final benchmark is provided by results of successful trailing edge noise measurements on an SD7003 airfoil that are presented and compared to results from the literature.  相似文献   
20.
The sound absorption mechanism of microperforated panel (MPP) absorbers and panel/membrane-type absorbers is both based on a certain resonance system and utilising its resonance effect. However, the relationship between the absorption mechanisms of MPPs and panel/membrane-type absorbers has not been discussed: it is not clarified whether they can occur simultaneously, or how they interfere each other. On the other hand, in a previous study there is an attempt to cause both absorption mechanisms simultaneously. In this paper, using an electro-acoustical equivalent circuit model, their sound absorption mechanisms and their relationship are discussed. In this study, three cases are considered: (1) the case in which only the mass reactance of the MPP is considered, (2) the case in which the losses of the panel is considered, and (3) the case in which the sound absorption of the back wall surface is considered. The results suggest that the microperforated panel absorption, which is Helmhotz-type resonance, and the panel/membrane-type absorption can be regarded as phenomena of the same kind which can be smoothly transformed into each other by changing a parameter, and can be consistently modelled and comprehensively discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号